FAQs

Frequently Asked Questions (FAQs)

Frequently Asked Questions (FAQs)

Home » Resources » FAQs

What is IP Rating?

IP (Ingress Protection) is the specification used for determining the level of protection something has against its environment.

Examples

  • IP54 – Partial rating against dust and light splashing of water for 10 minutes
  • IP65 – Full rating against dust and splashing of water for 10 minutes
  • IP69k – protection from high pressure jets.
Solids Water
0 – No Rating for Protection0 – No Rating for Protection
1 – Solid objects > 50mm1 – Vertical falling droplets
2 – Solid objects > 12mm2 – Vertical falling droplets at 15 degrees
3 – Solid objects > 2.5mm3 – Vertical falling droplets at 60 degrees
4 – Solid objects > 1mm4 – Splashing water for 10 minutes
5 – Partial protection against dust5 – Low pressure jets of water
6 – Full protection against dust 6 – Powerful Jets of water
7 – Full immersion (1m for 30 minutes)
8 – Full immersion (1m for longer than 30 minutes)
9k – Protection against powerful high temperature water jets

What is a Shunt Regulator?

A shunt regulator is a device that goes immediately after the power supply and is used to protect the power supply from back flow energy. If you have a vertical load and there is a power failure, the load will back drive and cause the motor to spin acting like a generator, this energy has to go somewhere and so goes up the line back to the power supply. This energy can cause the power supply to fail. When this occurs, a sensor inside the shunt will detect the voltage rise and will protect the power supply by turning on a resistor to ground where the energy can be safely dissipated to earth. Once the voltage level returns to normal, the voltage regulator will return the power supply to normal operations.


What are the differences between “Rolled” and “Ground” Ball-Screws?

  1. Manufacturing Process:
    • Rolled Ball Screws: These are created by pushing uncut bar stock blanks through rotating tool dies in a single operation. The rolling process shapes both the internal and external threads of the lead screw and ball nut. 
    • Ground Ball Screws: Ground screw threads are fabricated through an abrasion process. Material blanks rotate on their long axis between two machining centers, and extremely hard abrasive cutters carve out the threads from the cut blanks. 
  2. Strength and Precision:
    • Rolled Ball Screws: Generally possess more strength due to significant material strengthening achieved during the rolling process. However, they may not offer the same level of precision as ground ball screws.
    • Ground Ball Screws: Provide higher precision threading but are more expensive. 
  3. Cost and Application:
    • Rolled Ball Screws: More affordable than ground ball screws. 
    • Ground Ball Screws: Cost more but offer superior precision. 

What Is NSF Certification?

The National Sanitation Foundation (NSF) is a globally recognized organization dedicated to developing public health standards and certification programs for food, water, consumer products, and the environment. Their rigorous specifications ensure that products meet strict criteria for safety, quality, and sustainability, providing consumers and businesses alike with confidence in the products they use. From food safety to water treatment, NSF certification signifies adherence to industry-leading standards, promoting trust and reliability in the marketplace.


What are the differences between Servo & Steppers?

Servo motors and stepper motors are both popular choices for motion control applications, but they operate differently and have distinct characteristics. Servo motors use feedback control systems to precisely control the position, speed, and torque of the motor shaft. They offer high accuracy, fast response times, and are well-suited for dynamic applications where precise positioning is crucial, such as robotics and CNC machines. In contrast, stepper motors move in discrete steps, with each step corresponding to a specific position. They are simpler to control and typically less expensive than servo motors but may lack the same level of accuracy and speed, making them more suitable for applications that don’t require high precision or rapid movement, such as 3D printers and automated equipment. The choice between servo and stepper motors depends on factors such as precision requirements, speed, cost, and the specific needs of the application.


Optimizing Linear Actuator Performance with Pneumatic Ports

By adding pneumatic ports to your linear actuator, you can add positive pressure (5-10 psi) which aids in the protection of the internal components from outside contaminants. When air is added to the actuator, the internals will fill with air a build pressure, once the actuator is pressurized, air will want to escape; the air will escape where there are gaps or non-airtight areas, which is where the air will seep out. This controlled air seepage ensures that no contaminants can infiltrate the actuator at these vulnerable points.


What is PID Tuning?

PID tuning is a fundamental process in motion control systems, aiming to optimize the performance of feedback controllers. The acronym stands for Proportional-Integral-Derivative, representing the three key terms that shape the controller’s behavior. The proportional term responds to the current error, the integral term accumulates past errors, and the derivative term anticipates future errors. By adjusting these gains, engineers fine-tune the controller’s response to achieve stability, reduce overshoot, and minimize settling time.

  • Proportional (P): The proportional term responds to the current error by adjusting the control output proportionally. A higher P gain increases responsiveness but may lead to overshoot or instability.
  • Integral (I): The integral term accumulates past errors and helps eliminate steady-state error. It corrects for any long-term discrepancies between the desired and actual values.
  • Derivative (D): The derivative term anticipates future errors by considering the rate of change of the error. It dampens oscillations and improves stability. 

Tuning a motor using the “Buzz” Method

  1. Proportional (P): Increase the P gain until the system starts oscillating or “buzzing.” If there’s no oscillation, double the P gain.
  2. Integral (I): Gradually increase the I gain until the steady-state error is minimized. Be cautious not to cause overshoot or instability.
  3. Derivative (D): Add a small D gain to dampen oscillations and improve stability.